82. Ping Zhou, Annie Cuyt, Jieqing Tan, General order multivariate Padé approximants for Pseudo-multivariate functions. II, Math. Comp. 78 (2009), 2137-2155. 81. Zhang Li, Wu Hongyi, Tan Jieqing, Dual basis functions for the NS-power basis and their applications,Applied Mathematics and Computation,207(2)2009,434-441. 80. Zhang Li, Tan Jieqing, Wu Hongyi, Liu Zhi, The weighted dual functions for Wang-Bézier type generalized Ball bases and their applications, Applied Mathematics and Computation,215(1)2009,22-36. 79. Zhang Li, Wu Hongyi, Tan Jieqing, Dual bases for Wang-Bézier basis and their applications, Applied Mathematics and Computation, 214(1)2009,218-227. 78. 檀結(jié)慶、王燕、李志明,三次H-Bezier曲線的分割、拼接及其應(yīng)用,計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào),21(5) (2009), 584-588。 77. 謝進(jìn)、檀結(jié)慶,多形狀參數(shù)的二次雙曲多項(xiàng)式曲線,中國(guó)圖象圖形學(xué)報(bào),14(6)(2009),1206-1211. 76. 霍星、檀結(jié)慶,利用特征向量的三維模型檢索,工程圖學(xué)學(xué)報(bào),30(3) (2009), 76-79. 75. 彭凱軍、檀結(jié)慶,偽多元函數(shù)的Pade型逼近,系統(tǒng)科學(xué)與數(shù)學(xué),29(7),2009,971-979. 74. 檀結(jié)慶、方中海,區(qū)間Wang-Said型廣義Ball曲線的降階,計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào),20(11) (2008), 1483-1493 73. Zhang Li, Tan Jieqing, Liu Zhi, Polynomial approximations of offsets and rational surfaces by using bivariate S-power basis, Journal of Computational Information Systems, 4(4)(2008), 1679-1686. 72. XingYan,Tan Jieqing, Hong Peilin, Quaternion Julia fractals, Proceedings of the 9th International Conference for Young Computer Scientists, ICYCS 2008, 797-802. 71. 張莉、檀結(jié)慶、劉植,采用分割算法的Bezier曲線的S冪基降多階逼近,工程圖學(xué)學(xué)報(bào),29(6) (2008), 80-85. 70. 謝成軍、檀結(jié)慶,一種改進(jìn)的基于樣本塊的圖像修補(bǔ)方法,系統(tǒng)仿真學(xué)報(bào),20(10)(2008),2606-2608+2673 69. 李志明、檀結(jié)慶,有理三次樣條的誤差分析及空間閉曲線插值,計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào),20(7) (2008), 876-881 68. 邢燕,檀結(jié)慶,最小二乘支持向量機(jī)及其在數(shù)字水印中的應(yīng)用,儀器儀表學(xué)報(bào)(增刊),28(8)(2007),356-361. 67. Zhang Li, Tan Jieqing, Liu Zhi, Polynomial approximations of offsets and rational surfaces by using bivariate S-power basis, Journal of Computational Information Systems, 4(4)(2008), 1679-1686. 66. 李聲鋒、檀結(jié)慶、謝成軍、李 璐,基于Thiele連分式逼近的四階迭代公式,中國(guó)科學(xué)技術(shù)大學(xué)學(xué)報(bào),38(2),2008,138-140。 65. Jieqing Tan, Ping Jiang, Marr-type wavelets of high vanishing moments, Applied Mathematics Letters, 20(2007)1115-1121. 64. Min Hu, Jieqing Tan, Qianjin Zhao, Adaptive rational image interpolation based on local gradient features, Journal of Information and Computational Science, 4(1)2007, 59-67. 63. Benyue Su and Jieqing Tan, Circular Trigonometric Hermite Interpolation Polynomials and Applications, Journal of Information & Computational Science, 4(2)(2007), 709-720. 62. B.Y. Su, J.Q. Tan, Sweeping surface generated by a class of generalized quasi-cubic interpolation spline, Lecture Notes in Computer Science, Springer, 2007, 4488, 41-48. 61. Qiang Wang, Jieqing Tan, Multi-focus image fusion algorithm based on rational spline, Proceedings of 2007 10th IEEE International Conference on Computer Aided Design and Computer Graphics, Eds. Guoping Wang, Hua Li, Hongbin Zha and Bingfeng Zhou, IEEE Press, 225-229 60. Xing Huo, Jieqing Tan, Rujing Wang, Color transfer based on combining subtractive clustering with FCM clustering, Proceedings of 2007 10th IEEE International Conference on Computer Aided Design and Computer Graphics, Eds. Guoping Wang, Hua Li, Hongbin Zha and Bingfeng Zhou, IEEE Press, 461-464. 59. Qianjin Zhao, Jieqing Tan, Block based bivariate blending rational interpolation via symmetric branched continued fractions, Numerical Mathematics, A Journal of Chinese Universities (English Series), 16(1), 63-73, 2007. 58. Yan Xing and Jieqing Tan, A color watermarking scheme based on block-SVD and Arnold transformation, Proceedings of Second Workshop on Digital Media and its Application in Museum & Heritage, Eds. Zhigeng Pan, Jinyuan Jia, IEEE Computer Society, 2007,3-8. 57. Li Zhang, Jieqing Tan, Zhi Liu, Rational approximation of offset surfaces by using bivariate S-power basis, Proceedings of Second Workshop on Digital Media and its Application in Museum & Heritage, Eds. Zhigeng Pan, Jinyuan Jia, IEEE Computer Society, 2007,152-157. 56. 王強(qiáng)、檀結(jié)慶、胡敏,基于有理樣條的圖像縮放算法,計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào),19(10)(2007),1348-1351. 55. Annie Cuyt, Jieqing Tan, Ping Zhou, General order multivariate Padé approximants for pseudo-multivariate functions, Math. Comp. 75 (2006), 727-741. 54. Qianjin Zhao and Jieqing Tan, Block based Thiele-like blending rational interpolation. J. Comput. Appl. Math., 195(2006) 312-325. 53. Min Hu and Jieqing Tan, Adaptive osculatory rational interpolation for image processing. J. Comput. Appl. Math., 195(2006) 46-53. 52. Benyue Su, Jieqing Tan, Geometric modeling for interpolation surfaces based on blended coordinate system, LNCS 4270, 222-231,2006. 51. Qianjin Zhao and Jieqing Tan, Block Based Newton-like Blending Interpolation, J. Comput. Math., 24 (4) (2006): 515-526. 50. Su Ben-yue, Tan Jie-qing, A family of quasi-cubic blended splines and applications, J. Zhejiang Univ. SCIENCE A, 7(9)(2006) 1550-1560. 49. Qiang Wang and Jieqing Tan, Shape preserving piecewise rational biquartic surfaces, Journal of Information & Computational Science, 3(2)(2006),295-302. 48. Ping Jiang and Jieqing Tan, The Subdivision Algorithm for the Generalized Ball Curves, Journal of Information & Computational Science, 3(1)(2006),21-31. 47. Qianjin Zhao and Jieqing Tan, Block based Lagrange-Thiele-like blending rational interpolation, Journal of Information & Computational Science, 3(1)(2006),167-177. 46. 檀結(jié)慶、江平,區(qū)間Ball曲線的邊界及降階,計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào),18(3)(2006)378-384. 45. 趙前進(jìn)、胡敏、檀結(jié)慶,基于局部梯度特征的自適應(yīng)多結(jié)點(diǎn)樣條函數(shù)插值,計(jì)算機(jī)研究與發(fā)展,43(9)2006,1537-1542. 44. 江平,檀結(jié)慶, Wang-Said 型廣義Ball曲線的降階,軟件學(xué)報(bào),Vol.17 (Suppl)(2006),93-102. 43. Ping Jiang, Hongyi Wu, Jieqing Tan, The dual functionals for the generalized Ball basis of Wang-Said type and basis transformation formulas, Numer. Math. A J. Chin.Univ., 15(3)2006, 248-256. 42. 趙前進(jìn)、胡敏、檀結(jié)慶,圖像插值的多結(jié)點(diǎn)樣條技術(shù),中國(guó)圖象圖形學(xué)報(bào),11(5)(2006)667-671. 41. Min Hu, Jieqing Tan, Feng Xue, A New Approach to the Image Resizing Using Interpolating Rational-Linear Splines by Continued Fractions, Journal of Information & Computational Science,2(4)(2005), 681-685. 40. Xing Huo and Jieqing Tan, Bivariate rational interpolant in image inpainting, Journal of Information & Computational Science, 2(3)(2005),487-492. 39. Jieqing Tan and Benyue Su, A class of generalized trigonometric polynomial curves with a shape parameter, In: Proceedings of International Conference on Numerical Analysis and Applied Mathematics 2005, pp. 523-526, T.E.Simos,G.Psihoyios,Ch.Tsitouras Eds., Wiley-VCH Verlag GmbH & Co. KgaA, Weinheim, 2005. 38. Jieqing Tan and Qianjin Zhao, Successive Newton-Thiele’s rational Interpolation, Journal of Information & Computational Science, 2(2)(2005),295-301. 37. Jieqing Tan and Ping Zhou, On the finite sum representations of the Lauricella functions F-D, Advances in Computational Mathematics, 23(4)(2005), 333-351. 36. Ping Jiang and Jieqing Tan, Degree reduction of disk Said-Ball curves, Journal of Computational Information Systems, 1(3)2005,389-398. 35. Qiang Wang and Jieqing Tan, Rational quartic spline involving shape parameters, Journal of Information & Computational Science, 1(1)2004, 131-134. 34. Jieqing Tan and Ping Jiang, A Neville-like method via continued fractions, J. Comp. Appl. Math .. 163(1)(2004), 219-232. 33. Huanxi Zhao, Gongqin Zhu and Jieqing Tan, A Sleszynski-Pringsheim theorem for vector valued continued fractions and its optimal error bounds, J. Comp. Appl. Math..163(1)(2004),343-350 32. Min Hu and Jieqing Tan, Image reconstruction from regular and non-regular point sets based on multivariate blending rational interpolation, in: Proceedings of 8th International Conference on CAD/Graphics, Enhua Wu,Hanqiu Sun and Dongxu Qi Eds. , Welfare Printing Limited, Macau (2003)335-336.(ISTP收錄) 31. Jieqing Tan, Computation of vector valued blending rational interpolation. Numer. Math. A J. Chinese Univ.,12(1) (2003), 91-98. 30. Min Hu and Jieqing Tan, Image compression and reconstruction based on bivariate Interpolation by continued fractions, Proceedings of Second International Coference on Image and Graphics, Wei Sui ed., SPIE Vol. 4875 (2002) 87-92. 29. Jieqing Tan and Shuo Tang, Algorithms of composite rational interpolation based on continued fractions, Proceedings of the First International Congress of Mathematical Software, Arjeh M. Cohen, Xiao-Shan Gao, Nobuki Takayama eds., World Scientific, New Jersey?London?Singapore?Hong Kong, 2002,72-81. 28. Jieqing Tan, Baorui Song and Gongqin Zhu, Vector valued rational interpolants over triangular grids, Computers and Mathematics with Applications, 44(10-11)(2002), 1357-1367. 27. Jieqing Tan and Shuo Tang, Composite schemes for multivariate blending rational interpolation, J. Comp. Appl. Math. 144(1-2)(2002), 263-275. 26. Jieqing Tan, The limiting case of Thiele’s interpolating continued fraction expansion, J. Comput. Math., 19(4)2001, 433-444. 25. Jieqing Tan and Xiaoping Liu, Rational surfaces approximately reconstructed by continued fractions, Proceedings of The 7th International Conference on Computer Aided Design and Computer Graphics, Kunming, China, International Academic Publishers, Beijing, 2001. 24. Jieqing Tan, A compact determinantal representation for inverse differences, 數(shù)學(xué)研究與評(píng)論, 20(1) 2000,32―36. 23. 朱功勤、檀結(jié)慶、王洪燕,預(yù)給極點(diǎn)的向量有理插值及性質(zhì),高校計(jì)算數(shù)學(xué)學(xué)報(bào),22(2)2000,97―104。 22. Jieqing Tan and Yi Fang,Newton-Thiele’s rational interpolants, Numerical Algorithms, 24(2000), 141-157. 21. Jieqing Tan and Shuo Tang, Bivariate composite vector valued rational interpolation, Mathematics of Computation, 69(2000), 1521--1532.. 20. Gongqin Zhu and Jieqing Tan , A note on matrix valued rational interpolants, J. Comp. Appl. Math.,110 (1999), 129―140. 19. Cuyt, K. Driver, J. Tan and B. Verdonk, Exploring multivariate Pade approximants for multiple hypergeometric series. Advances in Comput. Math. 10(1999) 29-49. 18. Jieqing Tan, Bivariate rational interpolants with rectangle-hole structure, J. Comput. Math. 17(1)(1999)1-14. 17. Cuyt, K. Driver, J. Tan and B. Verdonk, A finite sum representation of the Appell series F (a,b,b;c;x,y), J. Comput. Appl. Math., 105(1999) 213-219. 16. Jieqing Tan, Bivariate blending rational interpolants, Approximation Theory and Its Application. 15(2) (1999) 74-83. 15. Jieqing Tan and Yi Fang, General frames for bivariate interpolation, 數(shù)學(xué)研究與評(píng)論, 19(4) 1999,681―687. 14. Jieqing Tan, Algorithms for lacunary vector valued rational interpolants, Numer. Math. A J. Chin. Univ., 7(2)(1998), 169-182. 13. Jieqing Tan, Interpolating rational splines in three dimensional space, 數(shù)學(xué)研究與評(píng) 論,18(2) (1998), 181-187. 12. Jieqing Tan and Gongqin. Zhu, General framework for vector valued interpolants, in: Proceedings of Third China-Japan Seminar on Numerical Mathematics, Zhong-Ci Shi ed., Science Press, Beijing/New York (1998) 273-278. 11. Jieqing Tan and Shuo Tang, Vector valued rational interpolants by triple branched continued fractions, Appl. Math. -JCU., 12 B(1)(1997), 99-108. 10. Jieqing Tan and Shuo Tang, An algorithm for vector valued rational interpolants by triple branched continued fractions, Chinese J. Num. Math. & Appl. , 19(1)(1997),59-63. 9. Shuo Tang, Jieqing Tan and Gongqin Zhu, On the choices of accelerating convergence factors for limit periodic continued fraction K(an/1), Numer. Math. A J.Chin.Univ., 5(1)(1996), 62-70. 8. 檀結(jié)慶、朱功勤,二元向量值分叉連分式插值的矩陣算法,高校計(jì)算數(shù)學(xué)學(xué)報(bào), 18(3)(1996), 250-254. 7. Jieqing Tan, Interpolating multivariate rational splines in R , Numer. Math. A J. Chin. Univ., 4(2)(1995), 185-192. 6. Jieqing Tan and Gongqin Zhu, A few constructions of generalized rational splines, 數(shù)學(xué)研究與評(píng)論, 15(4)(1995) ,485-498. 5. Jieqing Tan and Gongqin Zhu, Bivariate vector valued rational interpolants by branched continued fractions, Numer. Math. A. J. Chin. Univ., 4(1) (1995), 37―43. 4. Gongqin Zhu and Jieqing Tan, The duality of vector valued rational interpolants over rectangular grids, Chinese J. Num. Math. & Appl., 17(4)(1995), 75-84. 3. 朱功勤、檀結(jié)慶,矩形網(wǎng)格上二元向量有理插值的對(duì)偶性, 計(jì)算數(shù)學(xué), 17(3)(1995), 311-320. 2. Renhong Wang and Jieqing Tan, On interpolating multivariate rational splines, Appl. Numer. Math., 12(1993), 357-372. 1. Jieqing Tan, Interpolating multivariate rational splines of special forms, 數(shù)學(xué)研究與評(píng)論, 13(1)(1993), 73-78. |