題 目:近似算法設(shè)計(jì)和應(yīng)用實(shí)例--無線傳感器網(wǎng)絡(luò)基站最佳位置
報(bào)告人:石 怡 高級(jí)研究員
單 位:美國智能自動(dòng)化公司
時(shí) 間: 2014年7月2日(周三)上午10:00
地 點(diǎn)::校學(xué)術(shù)活動(dòng)中心二樓小報(bào)告廳
報(bào)告人簡介:石怡博士2007年畢業(yè)于弗吉尼亞理工大學(xué)電子和計(jì)算機(jī)工程系,現(xiàn)為美國智能自動(dòng)化公司高級(jí)研究員,美國弗吉尼亞理工大學(xué)客座助理教授,IEEE高級(jí)會(huì)員。石博士的研究領(lǐng)域集中在無線網(wǎng)絡(luò)干擾信號(hào)管理,能量管理,認(rèn)知無線網(wǎng)絡(luò),MIMO網(wǎng)絡(luò),協(xié)作通訊網(wǎng)絡(luò),無線傳感器網(wǎng)絡(luò),無線Ad Hoc網(wǎng)絡(luò),衛(wèi)星網(wǎng)絡(luò),社交網(wǎng)絡(luò)等。石博士參與編寫了5本書,在國際知名期刊和會(huì)議上發(fā)表論文近百篇。2006年,石博士以華盛頓區(qū)第一名的身份獲得由中國政府頒發(fā)的“國家優(yōu)秀自費(fèi)留學(xué)生”的獎(jiǎng)勵(lì);2008年和2011年,石博士的論文先后兩次在IEEE INFOCOM會(huì)議中獲得最佳論文獎(jiǎng)及最佳論文入圍獎(jiǎng)。石博士擔(dān)任IEEE Communications Surveys and Tutorials編輯,擔(dān)任過3個(gè)workshop的技術(shù)委員會(huì)主席和近50個(gè)國際會(huì)議的技術(shù)委員會(huì)委員,包括IEEE INFOCOM, ACM MobiHoc, IEEE MILCOM, IEEE ICC, IEEE WCNC, IEEE GLOBECOM等。
內(nèi)容簡介:In this talk, I will show how to design (1 ? ε)-optimal algorithm. We first give a brief overview on approximation algorithms. Such algorithms are designed to offer solutions that can approximate the unknown optimal solution according to certain benchmark performance criteria. In particular, in wireless network research, the most popular approximation algorithms can be classified as constant-factor approximation algorithms and (1 ? ε)-optimal approximation algorithms. The constant-factor approximation algorithms would only be useful if c is close to 1. But unfortunately, many results in the literature offer results that may be far away from 1. Our preference is toward the design of (1 ? ε)-optimal approximation algorithms, which will be presented with a case study. Such algorithms are intellectually challenging and require much novelty in their design. Nevertheless, should one be able to design such an algorithm, then both its theoretical significance and practical value would be assured.
The case study is a classic and fundamental problem on base station placement in a wireless sensor network (WSN). We aim to find the optimal location for the base station so that the network lifetime (until any sensor node runs out of energy) is maximized.