久久久成人毛片无码,成人做爰A片免费看黄冈美女直播,精品国产乱码久久久久久1区2区 ,精品偷拍被偷拍在线观看

X
...

通知公告

學(xué)術(shù)報告通知(編號:2017-44)

發(fā)布時間:2017-11-13 瀏覽次數(shù):

報告題目:Evolutionary Multimodal Optimization: Decision-Making and Visualization

報 告 人:Dr. Ran Cheng(程然) Research Fellow

單 位:英國伯明翰大學(xué)計算智能與應(yīng)用研發(fā)中心

報告時間:2017年11月15日(周三)上午8:30

報告地點:逸夫樓408會議室

報告摘要:

Multimodal optimization generally refers to single-objective optimization involving multiple optimal (or near-optimal) solutions. Thanks to the population based nature of evolutionary algorithms, which are able to obtain a set of candidate solutions in a single run, the evolutionary multimodal optimization has attracted increasing interest recently. In this talk, I will introduce our recent research in evolutionary multimodal optimization. On one hand, I will present how to perform decision-makings in multimodal optimization using evolutionary multiobjective optimization based techniques. On the other hand, I will introduce a visualization method for benchmark studies of multimodal optimization.

報告題目:Evolutionary Many-Objective Optimisation: Pushing the Boundaries

報 告 人:Dr. Miqing Li(李密青) Research Fellow

單 位:英國伯明翰大學(xué)計算智能與應(yīng)用研發(fā)中心

報告時間:2017年11月15日(周三)上午9:15

報告地點:逸夫樓408會議室

報告摘要:

Many-objective optimisation refers to a class of optimisation problems that have more than three objectives. The last decade has witnessed the emergence of many-objective optimisation as a booming topic in a wide range of complex modern real-world scenarios. However, in contrast to conventional multi-objective optimisation which involves two or three objectives, many-objective optimisation poses far great challenges to the area of nature-inspired search algorithms. In this talk, I will introduce several pieces of our work in solving the challenges from perspectives of algorithm design, performance assessment, test problem construction and visualisation in many-objective optimisation. In particular, I will present a simple but effective method to make Pareto-based algorithm well suited to many-objective optimisation and then a test problem suite to aid the visual examination of many-objective optimisers.

報告題目:Multi-objective evolutionary algorithms for solving complex optimization problems

報 告 人:張興義 教授、博士生導(dǎo)師

單 位:安徽大學(xué)計算機科學(xué)與技術(shù)學(xué)院生物智能與知識發(fā)現(xiàn)研究所

報告時間:2017年11月15日(周三)上午10:00

報告地點:逸夫樓408會議室

報告摘要:

Multi-objective evolutionary algorithms have been verified to be a useful technology for solving optimization problems during the last two decades, however, much work still deserves further investigations when addressing complex optimization tasks. In this talk, I will first briefly introduce the multi-objective evolutionary algorithms, and then mainly focus on threemulti-objective evolutionary algorithms recently suggested by us to tackle complex optimization problems. The three works included in this presentation are: 1) a knee point driven evolutionary algorithm for many-objective optimization problems, 2) a decision variable clustering based evolutionary algorithm for large-scale optimization problems, and 3) a multi-objective evolutionary algorithm for task-oriented pattern mining task.

報告題目:“分而治之”的協(xié)同演化策略在大規(guī)模優(yōu)化中的應(yīng)用

報 告 人:楊鳴 副教授 碩士生導(dǎo)師

單 位: 中國地質(zhì)大學(xué)計算機學(xué)院

報告時間:2017年11月15日(周三)上午10:45

報告地點: 逸夫樓408會議室

報告摘要:

大規(guī)模優(yōu)化是大數(shù)據(jù)優(yōu)化的重要組成部分,也是當(dāng)今優(yōu)化研究領(lǐng)域的難點和前沿。協(xié)同演化(Cooperative Co-evolution)算法將問題分解為若干個子問題,并分別對每個子問題進行優(yōu)化求解。這種“分而治之”的優(yōu)化策略降低了問題的求解難度。本報告主要講解如何將大規(guī)模優(yōu)化問題中的變量進行分組及如何對每個子問題進行優(yōu)化求解。

太陽集團tyc5997

學(xué)院地址:安徽省合肥市蜀山區(qū)丹霞路485號(太陽集團tyc5997翡翠湖校區(qū))
郵編:230601 聯(lián)系電話:0551-6290 1380
Copyright @ 2023 中國·太陽集團tyc5997(股份)有限公司 皖公網(wǎng)安備 34011102000080號 皖I(lǐng)CP備05018251號-1
TOP